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Spatial fidelity of skeletal remains: elk wintering and calving grounds
revealed by bones on the Yellowstone landscape

JOSHUA H. MILLER
1

Committee on Evolutionary Biology, The University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637 USA

Abstract. The spatial distributions of bones on landscape surfaces (death assemblages)
may contain high-quality data on species’ landscape use. Previous investigations into the
spatial fidelity of death assemblages focused on general habitat preferences of the source
community. Using well-studied elk populations of Yellowstone National Park, I test the
geographic sensitivity of death assemblages by assessing the fidelity of shed elk antlers to the
distribution of bull elk in late winter (documented through aerial surveys). I also test the
geographic fidelity of newborn calf bones to known calving areas. The spatial distribution of
antlers is highly faithful to bull elk landscape use, describing the decadally averaged
distribution of wintering grounds as well or better than individual aerial surveys.
Discrepancies in geographic distributions between recent wintering patterns and the multi-
decadal antler assemblage also suggests differences in winter landscape use between current
and historical (wolf-free) populations. Neonatal remains, including those partially consumed
by carnivores, were always recovered in known calving areas, and all sampled calving grounds
produced neonatal bones. Bone surveys are a new, minimally invasive, low-impact tool for
obtaining high-quality historically informed data on species’ geographic and habitat
requirements. This tool will be particularly useful for managing sensitive species, fragile
ecosystems, and poorly studied regions.

Key words: conservation paleobiology; ecological baselines; landscape use; noninvasive survey methods;
taphonomy; Yellowstone National Park.

INTRODUCTION

Establishing how species and populations utilize their

geographic ranges (geographic use) is essential for

successful conservation and management (Griffith et

al. 2002, Doswald et al. 2009, Geremia et al. 2011).

While species’ landscape use (including home ranges,

birthing grounds, breeding areas) varies across annual,

decadal, and longer timescales (Griffith et al. 2002,

National Research Council 2005, Geremia et al. 2011),

available data on geographic use are often based on few

individuals sampled across a restricted number of

seasons and generations. Given the common absence

of historical multi-season, multi-decadal studies, other

methods are needed to obtain extended temporal

perspectives.

Accumulations of bones on landscape surfaces (death

assemblages) faithfully record species richness, commu-

nity structure, and population shifts of source commu-

nities over many decades, and there is a growing

literature on the utility of incorporating such assem-

blages into the tool kit of field biologists (Behrensmeyer

1978, Liebig et al. 2003, Kidwell 2007, Western and

Behrensmeyer 2009, Dietl and Flessa 2010, Terry

2010a, b, Miller 2011, Pyenson 2011, Behrensmeyer

and Miller 2012). In addition, species’ habitat prefer-

ences and local habitat suitability are also faithfully

recorded in patterns of skeletal abundances across a

region (Behrensmeyer et al. 1979, Kidwell 2007, Western

and Behrensmeyer 2009, Terry 2010b). However, the

capacity of bone accumulations to capture finer-scales of

biogeographic data, including geographic preferences

within a single habitat and seasonal shifts in landscape

use due to species phenologies, has remained untested.

Here I test if the geographic distribution of skeletal

remains in Yellowstone National Park, which accumu-

lates over decades to centuries (Miller 2011), can provide

high-quality data on elk (Cervus elaphus) geographic

use. I focus on bones that record season-of-input,

including shed elk antlers and newborn skeletal remains.

Using these data, I test if concentrations of seasonally

pulsed bone inputs correspond to known regions of

critical importance for species’ survival (e.g., wintering

grounds and calving/rearing areas). Using spatial

interpolation, I then use bone data to map the

distribution of seasonally specific landscape use of elk

across Yellowstone and test the congruence of that

interpolation to an independent suite of bone survey

data. Results illustrate that bone surveys offer a

powerful new tool for providing historical perspectives
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on patterns of species’ geographic use—data that are

currently unavailable for most ecosystems.

Antlers and wintering grounds in Yellowstone

In Yellowstone, bull elk generally winter in bachelor

groups on the Northern Range (Fig. 1) and shed their
antlers in late winter (March to April; Houston 1982,

Feldhamer et al. 2003). Shed antlers have a low
probability of long-distance transport because they are
heavy, awkward to move, and are of low and only

sporadically important nutritional value for carnivores
and ungulates large enough to move them (Wika 1982,

Wald 2011). Thus, antler concentrations should be
locally high in areas where bull elk reside in late winter.

Neonatal remains and calving/rearing grounds

Calving and early rearing of neonatal elk occurs in
areas with specific nutritional, environmental, and safety

characteristics (Houston 1982, Singer et al. 1997,
Feldhamer et al. 2003, Barber-Meyer et al. 2008).

Annual mortality of elk calves in Yellowstone can be
.70%, with .85% of deaths occurring in the first 30

days and .90% in the first six months (Barber-Meyer et
al. 2008), a period that can be identified in skeletal

remains using patterns of molar eruption (Klein and
Cruz-Uribe 1984, Azorit et al. 2002) and morphology of

post-cranial skeletal elements (Appendix A: text 1.0). If
neonatal bones survive the rapid weathering and
destruction that is characteristic of juvenile skeletal

elements (Behrensmeyer 1978), they should accumulate
in regions used for calving and early rearing. The small

sizes and high organic composition of neonatal bones,
however, make them susceptible to consumption and

transportation by carnivorous mammals and birds.
Thus, in contrast to shed elk antlers, there is some

expectation that neonatal bones will be rare or absent,
and may be dispersed from the location of death;

perhaps beyond the boundaries of calving and early
rearing areas. A test of the fidelity of neonatal remains

to calving grounds is, thus, also a test of the potential of
carnivore-mediated skeletal dispersal to blur fine-scale

geographic data contained in death assemblages.

MATERIALS AND METHODS

Collecting skeletal data

Geographic locality data on shed antlers and neonatal
bones across Yellowstone’s Northern Range were

collected using standardized bone surveys. To measure
bone concentrations, data from 10 1 km long plots were

sampled from each of four habitats; rolling grassland,
lake margin, river margin, and conifer forest (40 sample

plots total). Samples of each habitat were distributed
across the study area. To accommodate differences in

habitat geometries, sample plot widths were habitat
dependent. All data were standardized by sampled area.

Grassland plots were 100 m wide (50 m on either side of
the midline), forest plots were 60 m wide, and lake and

river margin plots extended 30 m from the water’s edge

(Behrensmeyer 1978, Miller 2011). Sample plots were

spaced a minimum of 1 km apart to reduce the

possibility that skeletal elements from one individual

would be sampled multiple times due to biological

dispersal. This project was part of a more extensive

effort to define the ecological fidelity of temperate

terrestrial death assemblages (Miller 2011), and no data

on the locations of wintering grounds or calving grounds

were used to influence sample plot locations. Bone

surveys were conducted in the summers of 2005, 2006,

and 2007.

To generate data, two field assistants walked back and

forth, perpendicular to either side of sample plot mid-

lines (or together along water margins), visually

inspecting the entire plot and flagging observed bones,

bone fragments, and carnivore feces (each plot typically

took a full day to sample). I collected standardized data

on each bone, including skeletal element, ontogenetic

stage, weathering stage (a proxy for postmortem

duration; Behrensmeyer 1978, Miller 2011), and geo-

graphic location (eTrex Vista or Rhino II WAS-enabled

GPS; Garmin International, Olathe, Kansas, USA).

I used the bone data to (1) test the spatial fidelity of

antler accumulations against aerial survey data and (2)

interpolate concentrations of antlers and neonatal

skeletal remains across the study area using inverse

distance-weighting (IDW; Shepard 1968, Longley et al.

2005: see also Appendix A: text 2.0). The spatial

FIG. 1. The Northern Range of Yellowstone National Park
showing known calving areas (after Barber-Meyer et al. [2008]).
The star in the inset indicates the location of Yellowstone within
the United States. Only the Northern Range contained within
Yellowstone was examined (shaded region). The Mammoth
region includes the Stevens Creek area. The Blacktail Deer
Plateau includes Mt. Everts and Tower. The Buffalo Plateau
includes Little America and Slough Creek. The Lamar Valley
region includes Mt. Norris.
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interpolations extend 6 km from all 40 sample plots,

though not beyond the study area. The predictive power

of the antler interpolation was tested using data from 14

additional sample plots from the same habitats (Appen-

dix A: text 3.0). Predicted values of validation sample

plots were defined as the mean value of the interpolated

surface sampled by each plot polygon (sampled with a

10 m grid). To calculate confidence estimates around the

interpolation, prediction errors for each validation plot

(differences between interpolated antlers/km2 and sam-

pled values) are expressed relative to the range of

interpolated values (i.e., for an interpolation surface that

ranges between 0 and 800 antlers/km2, a sample plot

predicted within 80 antlers/km2 is correct within 10% of

the interpolation). Sample sizes of newborn bones are

small, making validation of the interpolation difficult. In

addition, knowledge of the relative importance of

Yellowstone calving grounds over time is not as

quantitatively developed as bull elk late-winter geo-

graphic use, though some data on locations and relative

dominance of Yellowstone calving and rearing grounds

are available from historical records (Houston 1982) and

more recent research on calf mortality (Singer et al.

1997, Barber-Meyer et al. 2008). Thus, the neonatal

interpolation is used here as a guide to areas with

relatively high and low concentrations of neonatal

skeletal remains, and is compared qualitatively with

known regions of calving activity and inactivity. Spatial

analyses were calculated using ESRI ArcGIS 9.3

software (ESRI, Redlands, California, USA).

Counting skeletal units and standardizations

To compare data among sample plots, antler counts

are standardized by sampled area (antlers/km2). Only

antlers and antler fragments with the rounded pedicle

attachment surface (skull attachment) indicative of

shedding are included in these analyses. For neonatal

remains, because one calf can contribute multiple bones

to a single sample plot, the collection of bones from each

plot was summarized into the minimum number of

individuals (MNI) using skeletal element abundances,

left-sided and right-sided bones, and weathering stages

(Behrensmeyer et al. 1979, Badgley 1986, Lyman 2008,

Miller 2011, Behrensmeyer and Miller 2012). By

coalescing the bone sample down to an estimated

number of represented calves, the bone data become

more readily comparable to survey results of the living

populations. MNI is conservative, however, and it may

underestimate true sampled abundances (Lyman 2008).

For each sample plot, neonatal MNI are standardized

by plot area (MNI/km2).

Available geographic data on bull elk late-winter

geographic use

A decade of late-winter elk classifications conducted

between 1998 and 2007 (no survey in 2001; Northern

Yellowstone Cooperative Wildlife Working Group

1988–2007) serves as the spatial reference for testing

the quality of geographic data from shed antlers

(Appendix B). To standardize aerial surveys, the

Yellowstone wildlife management community divides

the Northern Range into 68 geographic units (elk count

units; Appendix C). During late-winter classifications,

10–46 elk units are randomly selected and data are

collected on the number, age, and gender (cow, calf,

bull) of observed elk. Late-winter surveys are generally

conducted in March, near the time of maximum antler

shed.

Data transformation

To compare observed bull counts (live data) with

area-standardized antler concentrations (dead data), live

data were first transformed to the number of observed

bulls in each elk unit standardized by elk unit area. For

each year, sampled elk units were then ranked by these

bull concentrations. The dead data (antler concentra-

tions) were also ranked by the elk units in which they

occur. For elk units containing more than one bone

survey, antler counts and sample plot areas were pooled

to approximate the pooled nature of aerial surveys

before calculating antler concentrations (antlers/km2).

These rankings provide relative geographic concentra-

tions, by elk unit, for bull elk from aerial surveys (1998–

2007) and shed antlers on the landscape.

Comparing aerial (live) and bone (dead) surveys

To test the geographic consistency with which bull elk

use the Yellowstone landscape, I used pair-wise Spear-

man rank-order correlation tests of the elk unit-ranked

bull concentrations across all years (live–live compari-

sons). To test the correlation between individual late-

winter surveys and long-term patterns, each late-winter

survey is also compared to mean bull concentrations

across all other aerial surveys (liveave–live comparisons).

To limit autocorrelation, data for the target late-winter

survey (livei ) is not included in the calculation of

average live data (liveave excluding i ). To test the

congruence between antler concentrations and annual

bull elk distributions (live–dead fidelity), Spearman

correlations compared elk units ranked by antler

concentrations and individual late-winter surveys (live–

dead comparisons). To test live–dead fidelity over longer

time scales, Spearman correlations were performed

between elk units ranked according to antler concentra-

tions and their long-term average bull concentrations

(mean across all sampling years; liveave–dead compari-

son). Because rivers with margins conducive to bone

surveys are spatially biased to the eastern portion of the

study area, and half of river margin surveys sampled elk

units with limited (two years or less, n¼ 3 surveys) or no

late-winter survey data (n ¼ 1), or sampled rivers that

define borders between elk units (n ¼ 1), river margins

could not be reasonably included in live–dead compar-

isons (though they were included in the spatial

interpolation). Spearman rho ranges between 1.0 (per-

fect positive correlation) and �1.0 (perfect negative

JOSHUA H. MILLER2476 Ecology, Vol. 93, No. 11



correlation; Sokal and Rohlf 2000). Analyses were

conducted in the open source statistical platform R
version 2.9.2 (R Development Core Team 2009).

RESULTS

The distribution of shed antlers mirrors bull elk
geographic use in late winter

All pair-wise comparisons among late-winter aerial
surveys (live–live comparisons; Fig. 2a) are generally

consistent (median¼ 0.37, n¼ 36 comparisons), but the
overall distribution extends across the full range of

Spearman rho, varying from perfectly positive (1.0) to
perfectly negative (�1.0). This interannual similarity in

geographic use provides the opportunity (but not
necessity) for the formation of congruent geographic

patterns of shed antler concentrations. Comparisons
between individual aerial surveys and bone surveys

(live–dead comparisons; Fig. 2b) are more narrowly
distributed (median ¼ 0.34, n ¼ 9 comparisons), but are
not significantly different from live–live comparisions

(Mann-Whitney U ¼ 157, P ¼ 0.90). In both cases,
significant rho values are not common; for live–live, n¼
5 significant values (13% of comparisons), for live–dead,
n ¼ 1 significant value (11%).

Comparisons of individual late-winter aerial surveys
to average bull concentrations (liveave–live; Fig. 2c,

boxplot) are positive and the overall range of Spearman
values is narrower than live–live comparisons (median¼
0.49, n ¼ 9 comparisons; n ¼ 5 comparisons for P ,

0.05). Shed antlers were nearly ubiquitous across

Yellowstone, with 97% of plots (29 of 30) from lake
margins, forests, and grasslands yielding at least one

shed antler (antlers were less common on river margins:
Appendix D). Correlation between the geographic

distribution of shed antler concentrations and mean
bull elk concentrations (liveave–dead) is high (Fig. 2c,

diamond point; rho¼ 0.54, P , 0.05), approaching the
maximum liveave–live correlation (rho¼ 0.63, P , 0.01).

Antler concentrations on the landscape are predictable
and map bull elk geographic use

While shed antlers are found across Yellowstone, high
concentrations were encountered along the contiguous

rolling grasslands and ridges of the Mt. Everts–Blacktail
Tower regions (darker regions in the western portion of

Fig. 3a) and Mammoth (northwest corner of Yellow-
stone; see Fig. 1 for geographic reference). One antler-

rich site was recorded in the hills north of the Lamar
Valley, but antlers were otherwise generally sparse in the

eastern portions of the study area. To test the predictive
power of the IDW interpolation, predicted antler

concentrations for the validation sample plots were
compared to their empirical values (circles in Fig. 3a;

Appendix E). Half of validation sample plots (7 of 14;
open circles with cross-hairs in Fig. 3a) were predicted
within 78 antlers/km2 (i.e., 10% of the interpolation’s

total range), and over 85% of sample plots (12 of 14;
open circles with vertical lines) were correctly predicted

within 156 antler/km2 (20% of the interpolation surface).

While small-scale geographic heterogeneities are evident

(two validation plots are more poorly predicted), antler

concentrations across Yellowstone can be largely

modeled using the simple IDW function.

Neonatal remains faithfully document calving

and early rearing areas

Calf remains were found in roughly half of all sample

plots (22 of 40; solid shapes in Fig. 3b; Appendix F) and

were geographically widespread. While the presence of

neonatal skeletal remains was more pervasive than

expected, sample sizes of neonatal MNI in individual

plots were generally small with over half of neonatal-

positive plots yielding a single calf (59%; 15 of 22).

However, of the seven plots yielding more than one calf,

five are within the Blacktail Deer Plateau Region

FIG. 2. Geographic consistency (a) among bull elk concen-
trations from individual late-winter aerial surveys (live–live
comparisons), (b) among individual aerial surveys and antler
accumulations (live–dead), and (c) between decadally averaged
aerial survey data and both individual aerial surveys (liveave–
live, boxplot) and antler accumulations (liveave–dead, dia-
mond). Boxplots of Spearman correlations display median
and interquartile, whiskers show overall range. Live–live
comparisons in panel (a) show modest agreement in the
distribution of bull concentrations across Yellowstone. The
distribution of live–dead comparisons in panel (b) is not
significantly different from live–live comparisons (Mann-
Whitney U test, P ¼ 0.90), but it spans a narrower range of
values, illustrating dampened variability characteristic of
extended sampling intervals (also seen in liveave–live compar-
isons). Antler surveys describe annual bull elk distributions
with the same fidelity as aerial surveys and have higher fidelity
to decadally averaged aerial survey data (panel [c]; liveave–dead
comparison) than most individual surveys of the living.
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(including Mt. Everts and nearby areas). Spottier

concentrations were found in Little America and the

Buffalo Plateau Region (including Slough Creek).

Remains of neonatal elk map well onto known calving

grounds. Studies of calving in Yellowstone show that

many regions of the Northern Range can be used for

calving, and preferences among areas appear to shift

across decadal timescales (Houston 1982, Barber-Meyer

et al. 2008). In the early 2000s, calving was observed at

Mammoth, Swan Lake Flats, the Blacktail Deer Plateau

(including Mt. Everts and Tower), and the Lamar

Valley–Mount Norris area (Barber-Meyer et al. 2008).

Calving was also documented on the Buffalo Plateau

Region, but in smaller numbers (Barber-Meyer et al.

2008). Calving was also broadly distributed in the 1980s

(Singer et al. 1997, Barber-Meyer et al. 2008), but most

often observed near Swan Lake Flats and the Lamar

Valley. Importantly, every locality in which skeletal calf

MNI were observed corresponds to a region that

supports the calving and rearing of young elk. Further-

more, the reverse is also true; the death assemblages of

all sampled areas known to support calving contained

skeletal neonatal individuals. Although much of Yellow-

stone’s Northern Range is conducive to calving (Hous-

ton 1982, Barber-Meyer et al. 2008), sampled regions

that are inhospitable did not produce neonatal remains.

These regions include burned forests with thick carpets

of downed trees that are passable by adult elk (and

predatory birds) but presumably less hospitable to

calves, as well as regions distal to known-calving areas.

The absence of neonatal remains beyond calving and

rearing areas seems meaningful, but further sampling in

regions with more quantitative spatial understanding of

calving ground preferences will provide a more rigorous

test of this finding.

DISCUSSION

Bone accumulations provide long-term perspectives

on geographic use

Death assemblages accumulate over multiple genera-

tions, offering more expansive temporal perspectives

than other sources of ecological data retrievable from

modern ecosystems (Kidwell 2007, Western and

Behrensmeyer 2009, Terry 2010a, b, Miller 2011). Bones

in Yellowstone, for example, can survive on the

landscape across centennial timescales (Miller 2011).

The capacity of these data to reveal patterns of

landscape-use is illustrated here; the spatial distribution

of antlers obtained in a few summers describes decadally

FIG. 3. Inverse distance-weighted interpolation of (a) antler concentrations and (b) neonatal minimum number of individuals
(MNI) concentrations on the Northern Range as sampled by 40 plots in grasslands, forests, lake margins, and river margins. For
antler concentrations in panel (a), 14 validation sample plots (circles) are also shown (see Appendices D and E). Over 85% of the
validation sample plots (12 of 14) are predicted within 20% of the interpolation surface (6156 antlers/km2). Dashed white lines
show placement of sample plots when moved for map clarity. For neonatal remains in panel (b), relatively high concentrations are
located on the Blacktail Deer Plateau with spottier concentrations along the Buffalo Plateau. Calf remains are only found within
known calving areas. Model output for neonatal MNI concentrations was binned using Jenks natural breaks optimization.
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averaged late-winter landscape use of Yellowstone bull

elk with higher fidelity than most individual aerial

surveys (Fig. 2c). In addition, while individual aerial

surveys will capture stochastic biological events and

high-frequency ecological variability (wide ranging

Spearman values of Fig. 2a), multi-generational records

(including dead data) provide landscape use data that

incorporate, but are not overwhelmed by, the ecological

variability inherent to biological systems (Fig. 2b, c).

Antlers provide insight into bull elk resource

partitioning in late winter

Pooling antler data among habitats (lake margin,

open grassland, forest) provides a general geographic

overview and illustrates the high fidelity with which

antler accumulations capture bull elk geographic use in

late winter (Fig. 2b and c). The variability of this fidelity

can be tested using habitat-specific liveave–dead com-

parisons. These comparisons show that antler accumu-

lations of grasslands (rho¼ 0.64, P¼ 0.096) and forests

(rho¼ 0.74, P , 0.05) have remarkably high geographic

fidelity to decadally averaged survey data (both higher

than all liveave–live comparisons; Fig. 4a and b), while

lake margins show reduced fidelity (Fig. 4c, rho¼ 0.383,

P ¼ 0.31). Winter habitat partitioning of bull elk likely

plays a role in this discrepancy. Because the sampled

lakes are largely frozen at the time of antler shed, they

and surrounding snow-buried vegetation offer minimal

nutritional value and may not be used as an aquatic

escape from predators. There is no indication of bias

against bones around lake margins, as they yield among

the highest bone concentrations on the Yellowstone

landscape and offer ecological data that is highly faithful

to ungulate species richness and community structure

(Miller 2009, 2011). Thus, in winters, bulls may spend

more time in open grasslands and forests (as observed

elsewhere: Boyce et al. 2003, Mao et al. 2005) with

reduced and less consistent use of lake margins. For

grassland and forest bone accumulations, either sepa-

rately (Fig. 4a and b) or combined (Fig. 4d, rho¼ 0.54,

P , 0.05), the available spatial data have comparatively

high (or higher) affinity to decadally averaged survey

records than individual aerial surveys.

Predation and scavenging do not degrade

regional geographic signals

The capacity of neonatal remains to identify calving

areas is particularly significant because carnivores have

likely transported many of these individuals from sites

of death. Over 80% of neonatal MNI (28 of 34;

Appendix F) show evidence of carnivore consumption

(tooth scrapes and/or punctures). Even with this high

transport potential, the geographic distribution of

neonatal bones faithfully identifies areas used for calving

and early rearing.

The robustness of the skeletal signals of calving

grounds may be due, at least in part, to the wide

expanses of these important areas (Houston 1982,

Barber-Meyer et al. 2008). In fact, similar critical

geographic regions for many species (e.g., calving,

wintering, and breeding grounds) encompass wide

geographic areas (Duff and Singer 1982, Griffith et al.

2002, Healy 2003) that are generally larger than a

mammalian (or even avian) predator is likely to carry a

meal. Thus, as is evident in the Yellowstone death

assemblage, predatory and scavenging activity may only

rarely result in the movement of skeletal material

beyond the borders of calving grounds. This clarity of

geographic signal for readily scavenged, highly trans-

portable skeletal remains indicates that modern and

fossil bone accumulations of all ontogenetic stages may

have broad potential for mapping geographic patterns

of their source communities.

Bones provide new perspectives

on the Yellowstone ecosystem

Death assemblages permit new questions to be asked

of historical populations. Even for the well-studied

Yellowstone ecosystem, there are limited historical data

that can be quantitatively integrated with modern

studies. For example, long-term quantitative assess-

ments of calving ground use, and changes in intensity of

use through time, have not been explicitly tracked over

FIG. 4. Liveave–dead comparisons (diamonds) for individ-
ual habitats compared to all liveave–live comparisons (boxplots,
as in Fig. 2c; n ¼ 9, n ¼ 5, respectively, for P , 0.05). Antler
accumulations in (a) grassland and (b) forest habitats show
higher fidelity to decadally averaged late-winter aerial surveys
than individual constituent surveys (liveave–dead grassland rho
¼ 0.64, P¼ 0.096; liveave–dead forest rho¼ 0.74, P , 0.05). (c)
The fidelity of lake margin death assemblages to living surveys
is reduced (liveave–dead lake margin rho ¼ 0.383, P ¼ 0.31),
which may correspond to more limited use of these areas by bull
elk in winter. The death assemblage of well-utilized habitats
(grassland and forest) when analyzed either individually [panels
(a) and (b)] or combined (d; liveave–dead grasslandþ forest rho
¼0.54, P , 0.05), show high or superior agreement to decadally
averaged aerial survey data than individual surveys themselves.
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decadal timescales. Calving regions identified by stan-

dardized bone sampling, however, are directly compa-

rable and deviations among areas (e.g., high

concentration of calf remains in the Blacktail Region)

suggest new historically integrated insight. While a

straight spatial reading of relative abundance patterns

is tempting, and may be correct, further testing of how

neonatal records are affected by spatially differentiated

predation intensity and dominant predator (e.g., wolf,

bear) will improve understanding of the available spatial

data and their potential biases.

Knowledge of late-winter landscape use by Yellow-

stone bull elk is similarly temporally limited. Because the

bone assemblage incorporates data from many decades

prior to the initiation of late-winter aerial surveys

(Miller 2011), much of the incongruence between aerial

survey data and bone records (Figs. 2c and 4) is likely

due to differences in sampling duration. Additionally,

restructuring of abundances and habitat use among

Yellowstone ungulates has occurred since the inception

of late-winter surveys, much of which has been at least

indirectly attributed to the reintroduction of wolves in

1995, following their extirpation in the 1920s (Smith et

al. 2003, White and Garrott 2005). Thus, it may be an

oversimplification to characterize comparisons between

a decade of aerial surveys and the multigenerational

antler record as a simple fidelity test. These comparisons

may also be characterized as tests of how late-winter

landscape use of a wolf-influenced bull elk population

compares to a measure of geographic use that incorpo-

rates the previous seventy years of a wolf-free ecosystem.

While liveave–dead comparisons are highly and signifi-

cantly positive, deviations may reflect changes in bull elk

wintering landscape use; including greater historical use

of the Mammoth and Blacktail Deer Plateau regions.

Death assemblages are readily available sources

of low-impact historical ecological data

The use of historically integrated (time-averaged)

death assemblages (including accumulations of bones,

teeth, shells, and plant materials) to expand the

observational window with which ecosystems are

studied is underway in a wide range of biotic systems.

From marine invertebrates and corals to terrestrial

mammals and plants, death assemblages can provide

meaningful historical ecological insights, such as quan-

tifying preferred avian (owl) hunting grounds (Terry

2010b), revealing changes in ungulate habitat use over

time (Behrensmeyer et al. 1979), establishing anthropo-

genic impacts on habitat suitability of marine mollusks

(Kidwell 2007), defining community baselines prior to

human influence (Aronson et al. 2007, van Leeuwen et

al. 2008), and resolving species’ responses to past climate

change that offers expectations and management strat-

egies relevant to contemporary populations (Terry et al.

2011, Faith 2012). Death assemblages also offer a

powerful source of baseline data on historical ecological

variability resulting from past climatic and/or ecological

drivers against which to assess recent changes in

populations, community structure, and biogeography

(Dietl and Flessa 2009, 2010). Furthermore, because

data on skeletal accumulations can be collected using

low-impact methods and when living members of target

species are absent, death assemblages provide a valuable

and minimally invasive means of studying sensitive

species and fragile ecosystems.

For mammalian communities, while the extended

temporal perspectives provided by bone accumulations

will be valuable across many climate settings and

habitats, death assemblages in arctic regions, where

durations of bone survival can extend to millennial

timescales (Meldgaard 1986, Sutcliff and Blake 2000),

are a clear target for future study. A particularly

germane study species with broad political, economic,

and social significance across the Northern Hemisphere

is caribou (Rangifer tarandus), whose unique physiology

and ecology make this northern cervid ideally suited for

studying many aspects of life history and landscape use

through bone accumulations. Female caribou, like

males, annually grow and discard antlers. However,

while male caribou shed antlers shortly after breeding,

pregnant females retain their antlers until casting them

within days of calving (Espmark 1971, Whitten 1995).

As caribou commonly aggregate during calving (Griffith

et al. 2002, Feldhamer et al. 2003), regions used as

calving grounds have the opportunity to develop

concentrations of shed female antlers and the bones of

newborn fatalities. Similarly, breeding areas can develop

accumulations of shed male antlers (Miller and Barry

1992). Thus, changes in landscape use across broad

timescales may be directly investigated using death

assemblages, placing current biological patterns in a

broader temporal context. The caribou example is

particularly salient as rapid warming and pressure for

mineral and petroleum extraction are increasing in key

calving areas in many arctic regions (including the

Arctic National Wildlife Refuge, Alaska). The historical

insights offered by skeletal remains can help us establish

the long-term biological value of such areas and assess

the ecological impacts of their loss or degradation.

CONCLUSIONS

Skeletal elements can provide high-quality multi-

decadal patterns of landscape use. Surface accumula-

tions of shed elk antlers and neonatal bones in Yellow-

stone National Park delineate elk wintering and calving

grounds and contribute to a more thorough under-

standing of local herds’ geographic requirements.

Analysis of spatial data contained in bone accumula-

tions, including modern and possibly some fossil

assemblages, enables rapid acquisition of seasonal and

species-specific patterns of landscape use across a broad

observational window.

For regions that lack historical ecological data or

remain poorly studied, bone surveys represent a critical

new, low-impact tool for establishing historical variabil-
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ity of geographic use. For well-studied regions, bone

surveys can augment traditional monitoring efforts and

address questions that are logistically difficult or have

otherwise been historically ignored. This accessible

historical data will permit wildlife management and

conservation efforts to quickly identify regions of critical

biological importance and provide extended perspectives

for identifying recent patterns of geographic use that are

abnormal to long-term baselines.
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