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Understanding extinction drivers in a human-dominated world is necessary
to preserve biodiversity. We provide an overview of Quaternary extinctions
and compare mammalian extinction events on continents and islands after
human arrival in system-specific prehistoric and historic contexts. We high-
light the role of body size and life-history traits in these extinctions. We find
a significant size-bias except for extinctions on small islands in historic times.
Using phylogenetic regression and classification trees, we find that while
life-history traits are poor predictors of historic extinctions, those associated
with difficulty in responding quickly to perturbations, such as small litter
size, are good predictors of prehistoric extinctions. Our results are consistent
with the idea that prehistoric and historic extinctions form a single continu-
ing event with the same likely primary driver, humans, but the diversity of
impacts and affected faunas is much greater in historic extinctions.

1. Background
Mammal faunas around the globe are depauperate today. As recently as the
Late Pleistocene, ecosystems contained some of the largest land mammals
ever to walk the earth [1]. The timing and intensity of the extinction differed,
but by the terminal Pleistocene all continental landmasses had suffered a
significantly size-biased extinction [2,3]. The loss of species has continued in
recent times, with island faunas being particularly vulnerable [4].

Late Quaternary extinctions were unique in several important respects. First,
the size selectivity was extreme when compared with previous extinction pulses
[2,5]; over the past 65 Ma, large body size does not make mammals more vul-
nerable to extinction [6,7] except in the terminal Pleistocene and the present [8].
Second, this size bias was present within mammalian orders as well as across
all mammals, suggesting that the extinction could not be explained solely by
shared ecological and life-history traits [2]. Finally, on every continent, extinc-
tions happened after the arrival of humans and not always at a time of
changing climate [3,9].

Several hypotheses have been proposed to explain the megafaunal extinction,
including human hunting [10], climate change and community disassembly [11],
removal of keystone species [12], hyperdisease [13], synergy between anthro-
pogenic and climate impacts [14], and a comet [15]. Except for human hunting,
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all of these hypotheses require large mammals to be intrinsi-
cally more vulnerable to extinction in order to account for the
striking size bias.

Here, we provide an overview of Quaternary extinctions
and examine the role of life history on mammalian extinctions
on both continents and islands. We compare prehistoric and
historic extinctions to determine if they resulted from similar
drivers. We define ‘prehistoric’ as extinctions that occurred in
the Late Pleistocene and Holocene (50–2 kBP), but prior to
the spread of Europeans and/or major cultural shifts in situ
(e.g. Japan). ‘Historic’ is defined as extinctions occurring
after the spread of Europeans and their associated com-
mensal species (i.e. 1500–1950 AD). Because the timing
of the extinctions and the timing of human arrival and
cultural changes varied, prehistoric/historic designations
are made individually for each system. We ask whether the
size selectivity of the extinctions is similar across continents,
large islands and small islands, and whether prehistoric
extinctions show similar life-history signatures to more
recent extinctions.

2. Material and Methods
(a) Data
Species lists and body size data for five continents and seven
large islands (electronic supplementary material, table S1) were
taken from an updated version of Smith et al. [16]. Data for
South American megafauna were revised using updated infor-
mation from Barnosky & Lindsey [14]. Species lists and body
sizes for species on small islands (n ¼ 31) were compiled from
a variety of literature sources (electronic supplementary mate-
rial, table S1). The size cut-off for small islands was set at less
than 40 000 km2, which coincides with a small, but natural
break in the distribution of our island areas. Islands were also
categorized as continental or oceanic, and analyses were rerun
to evaluate the effects of island classification. Taxonomic infor-
mation was standardized using a global phylogeny of Late
Quaternary mammals [17]. Life-history and ecological data for
extant species were taken from panTHERIA [18] and Ernest
[19]. Life history of extinct mammals and missing data for extant
mammals were estimated, using regressions on body size (elec-
tronic supplementary material, table S2). Ecological traits for
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Figure 1. Classification trees for prehistoric and historic extinctions on continents, large and small islands. Historic trees are pruned to the least complex tree (i.e. not
following the one-standard error rule) owing to low support (electronic supplementary material, figure S4). Colour of terminal leaves indicates dominance by either
extant (green) or extinct (blue) taxa. mo, months.
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extinct mammals and missing data for extant mammals were
estimated using ancestral character state reconstruction [20]. We
explored 12 ecological and life-history traits: trophic level, life
habit (terrestrial, arboreal, volant), gestation length (months),
newborn mass (g), weaning age (months), weaning mass (g), age
at first reproduction (months), maximum lifespan (months), litter
size, litters per year, home range (km2) and population density
(n km22). Continuous variables were log-transformed before
analysis. Body size was not included in analyses evaluating life
history and extinction risk, because some life-history data were
estimated using body size.

(b) Statistical analyses
We employed classification trees and random forests to model the
relationship between ecological and life-history traits and extinc-
tion risk. This approach is particularly well-suited because it
accommodates nonlinear behaviours among variables and
allows for complex interactions among intercorrelated variables
[8,21,22]. Unless noted elsewhere, classification trees were
pruned to the least complex tree with cross-validated error
within that of the lowest-error tree (the one-standard error rule)
[21]. We used the R packages ‘rpart’ and ‘randomForest’ to con-
struct the models. Body size distributions and trait distributions
identified as important by the random forests were compared
between extinct and extant mammals for each landmass and
time category. Species present on multiple landmasses were
recorded only once and species that went extinct on one landmass,
but were extant on another were excluded from further analyses
(see the electronic supplementary material). To evaluate whether
phylogenetic autocorrelation was an important driver of our
results, we used a multivariate phylogenetic logistic regression to
control for phylogeny while evaluating the relationship between

extinction risk and life-history traits [23]. Ecological traits were
not included in this analysis, because missing data were estimated
using the phylogeny. Analyses were performed separately for
historical and prehistoric extinctions on continents, large islands
and small islands.

3. Results and discussion
We find that large mammals are more prone to extinction
during the Late Quaternary (electronic supplementary
material, figure S1). This is true for both historic and prehistoric
extinctions, but the effect size decreases considerably in historic
extinctions (electronic supplementary material, table S3). The
time-transgressive nature of the size bias suggests that these
extinctions, both prehistoric and historic, are part of a single
prolonged event [24]. This consistency, combined with find-
ings that large body size does not correlate with higher
extinction risk outside the Quaternary [6,7], and the timing of
the extinctions after human arrival [3], suggests that either
large-bodied mammals are selectively targeted by humans
when they enter a new area, that large-bodied mammals are
more vulnerable to human impacts [25], or both.

We find a consistent and important role of life history
across landmasses (figure 1), with similar results for continen-
tal and oceanic islands (electronic supplementary material,
figure S2). Although the trait with the most explanatory
power is not always the same (figure 1 and electronic sup-
plementary material, figure S3), the values of the traits
associated with survival indicate increased ‘resilience’, that
is the ability to recover from perturbation. For example, species

Table 1. Model statistics for classification trees and random forests. Accuracy represents the proportion of faunas correctly identified as either extant or extinct
(and associated statistical significance). Null accuracy is the expectation of overall accuracy, given the structure of the data. Specificity and sensitivity are the
proportions of species correctly identified as extant and extinct, respectively. Cohen’s Kappa evaluates agreement between model output and true values, with a
correction for agreement by random chance. Low values (close to 0) indicate agreement by chance whereas high values (closer to 1) indicate agreement in
excess of chance. Significance value for Kappa reflects only the Kappa statistic (not the overall model).

accuracy null accuracy specificity sensitivity kappa

classification tree

prehistoric

continents 0.988 (!0.001) 0.919 0.909 0.995 0.916 (!0.001)

large islands 0.922 (!0.001) 0.839 0.682 0.968 0.692 (!0.001)

small islands 0.861 (!0.001) 0.516 0.746 0.968 0.719 (!0.001)

historic

continents 0.989 (0.475) 0.989 0.138 0.999 0.219 (!0.001)

large Islands 0.939 (0.002) 0.893 0.676 0.971 0.670 (!0.001)

small islands 0.841 (,0.001) 0.619 0.917 0.795 0.679 (,0.001)

random forest

prehistoric

continents 1.000 (!0.001) 0.935 1.000 1.000 1.000 (!0.001)

large Islands 0.997 (!0.001) 0.857 1.000 0.996 0.988 (!0.001)

small Islands 1.000 (!0.001) 0.545 1.000 1.000 1.000 (!0.001)

historic

continents 0.999 (!0.001) 0.987 0.966 1.000 0.965 (!0.001)

large Islands 1.000 (!0.001) 0.932 1.000 1.000 1.000 (!0.001)

small Islands 1.000 (!0.001) 0.610 1.000 1.000 1.000 (!0.001)
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Table 2. Multiple phylogenetic logistic regression of extinction risk against life history traits. * indicates predictors that are significant at the 0.05 level.

independent variable slope estimate z-value p-value

prehistoric

continents gestation month 4.18 4.47 ,0.001*

log newborn mass 20.84 22.63 0.009*

weaning month 22.88 23.02 0.003*

log weaning mass 20.13 20.33 0.743

age at first reproduction (months) 1.28 1.72 0.085

maximum life span (months) 22.49 21.96 0.050*

litter size 4.77 4.86 ,0.001*

litters per year 22.60 23.13 0.002*

log home range size 20.60 22.86 0.004*

log population density 0.78 3.80 ,0.001*

large Islands gestation month 1.09 0.75 0.453

log newborn mass 20.84 21.58 0.114

weaning month 21.25 21.00 0.318

log weaning mass 20.84 21.45 0.148

age at first reproduction (months) 0.77 0.52 0.602

maximum life span (months) 1.50 1.08 0.279

litter size 2.34 2.41 0.016*

litters per year 21.70 21.22 0.223

log home range size 20.45 21.05 0.296

log population density 20.19 20.52 0.607

small Islands gestation month 21.05 20.45 0.656

log newborn mass 2.54 1.15 0.251

weaning month 22.78 21.08 0.280

log weaning mass 22.92 21.06 0.289

age at first reproduction (months) 5.50 2.36 0.018*

maximum life span (months) 0.75 0.21 0.833

litter size 5.87 1.96 0.050*

litters per year 3.53 1.18 0.238

log home range size 0.50 0.57 0.570

log population density 0.76 1.40 0.161

historic

continents gestation month 0.98 1.09 0.278

log newborn mass 0.22 0.80 0.421

weaning month 22.21 22.12 0.034*

log weaning mass 20.35 20.82 0.413

age at first reproduction (months) 0.86 1.18 0.239

maximum life span (months) 0.37 0.49 0.625

litter size 0.93 1.14 0.254

litters per year 20.87 20.84 0.404

log home range size 20.70 22.18 0.030*

log population density 20.30 21.28 0.201

large Islands gestation month 23.00 22.03 0.042*

log newborn mass 20.83 21.46 0.144

weaning month 21.51 21.24 0.216

log weaning mass 0.78 1.21 0.227

(Continued.)
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Table 2. (Continued.)

independent variable slope estimate z-value p-value

age at first reproduction (months) 0.04 0.04 0.968

maximum life span (months) 2.00 1.50 0.135

litter size 22.83 22.17 0.030*

litters per year 0.94 0.77 0.443

log home range size 0.23 0.59 0.552

log population density 0.55 1.33 0.184

small Islands gestation month 0.22 0.10 0.920

log newborn mass 21.27 20.38 0.710

weaning month 20.55 20.36 0.720

log weaning mass 0.22 0.06 0.950

age at first reproduction (months) 0.53 0.16 0.870

maximum life span (months) 0.62 0.12 0.900

litter size 0.45 0.09 0.930

litters per year 0.56 0.14 0.890

log home range size 0.10 0.07 0.940

log population density 20.94 20.74 0.460
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Figure 2. Density plots of most important life-history traits predicting extinction risk identified by random forests (electronic supplementary material, figure S3).
Blue , extinct; green, extant. For each panel, kernel density estimates were calculated using the same bandwidth for extant and extinct taxa. mo, months.
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more likely to go extinct prehistorically had smaller litter sizes
(continents), larger weaning masses (large islands) and longer
lifespans (small islands). In historic extinctions, the most
important traits identified by random forest models were new-
born mass and gestation length (electronic supplementary
material, figure S3); again, extinct species had values that indi-
cated longer population recovery times (e.g. larger newborns,
longer gestation lengths). It is important to note that the
classification trees predicting the historic extinctions have
poor support, suggesting that life histories play a reduced
role in these extinctions (table 1 and electronic supplementary
material, table S4 and figure S4). For continents, this may be
because of sample size; only 29 species, or 1% of the fauna
have gone globally extinct in historic times, whereas 8%
went extinct in prehistoric times (electronic supplementary
material, table S1). This is less of an issue for islands as the
extinctions have been of similar magnitude (large islands:
10% historic, 15% prehistoric; small islands: 36% historic,
49% prehistoric). The multivariate phylogenetic logistic
regression also identified traits associated with increased resi-
lience (e.g. litter size) as being important after controlling for
phylogenetic autocorrelation (table 2). Similar to the classifi-
cation trees, life-history traits play an important role in the
prehistoric extinctions, especially on continents, and a lesser
role in historic extinctions.

The difference in the important life-history traits between
extinct and extant species was more pronounced during pre-
historic extinctions on all landmasses (figure 2 and electronic
supplementary material, table S3). Trait distributions differed
significantly and had much larger effect sizes for all land-
masses during the prehistoric extinctions. For the historic
extinctions, effect sizes were smaller, and only the trait
distributions for large islands were significantly different.
The lack of signal in historic extinctions (table 1 and
electronic supplementary material, figure S4) may be a
result of larger numbers of driving factors compared with
prehistoric extinctions [26].

4. Conclusion
Comparison of prehistoric and historic extinctions on different
landmasses provides insights into potential causes. Similar to
others, our results suggest that these extinctions are all part
of a single, prolonged, global extinction event that is still
ongoing [24]. The timing of extinctions [3,9] and similarity in
size selectivity suggest that the main driver of these extinctions
is human impacts rather than other causes such as climate
change. Extinction vulnerability in the prehistoric is closely
tied with life-history traits, indicative of reduced capacity to
quickly recover from a perturbation. Vulnerability to historic
extinctions has far weaker ties to life-history characteristics,
suggesting a change in the suite of extinction pressures; this
is likely a consequence of increasing intensities and varieties
of human perturbations [26]. Identifying these diverse, and
potentially synergistic extinction drivers across ecosystems
worldwide will be a challenging but necessary component
for managing the future of mammalian biodiversity.
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